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ABSTRACT

Because materials are often stressed into the olastic range in
light weight construction, a need exists for information concerning
the plastic behavior of structural members. A pnlate subjected to lateral
loads is such a structural member. In this report, we use several
general methods of plasticity to obtain information about the plastic
behavior of circular plates and we suggest how these methods can be
extended to rectangular plates.

In this report, the kinematic relations connecting the displacerents
of the neutral surface to the strains are those of the small deflection
theory of bending. The stress-strain relations are those of the theory
of plastic deformations (secant modulus theory). In the last chapter,
the comparison of the theory of plastic flow and the theory of plastic
deformations indicates that only slight differences would be found in
nmumerical results calculated by either of these two theories,

The four approximate methods which are applied to circular plates
are

1). Sokolovsky's Method,

2). Iteration Method,

3). Potential Fnergy Method,-

L4). Complementary Potential Energy Method.

Sokolovsky reduces the equations relating the moments, curvatures, and
loads cof the plate to two simultancous first order non-linear differential
equations, These equations are then solved by numerical integration. The
iteration method, developed by Ilyushin, is adapted for the bending of
circular plates. In this method we separate 2 non-linear second order
differential equation into a linear portion and a non-linear portion. The
effect of the non-linear portion on the solution is found by the iteration
procedure. The principle of minimum potential energy is used to estimate
the circumferential cuivature of the plate by means of functions containing
arbitrary parameters. These parameters are eveluated by Galerkin's Method.
The principle of minimum complementary potential energy is used to estimate
the radial bending moment in the plate by a similar process.

Numerical results are obtained by all four methods for a simply
supported uniformly loaded plate for a material where the second stress
invariant 8 is ralated to the second strain invariant E by

S = 26(1 - AE%)E,
A comparison of the results of the above methods is riven in the last
chapter of this report. Also, in this chapter, the last three of the

above approximate rethods are developed for rectangular vlates, hut no
numerical calculations are made,
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CHAPTER I

INTRODUCTION

1.1 The Problem Before Us.

The circular plate symmetrically loaded by lateral forces is a
structural member which the practicing engineer often encounters. A
schematic diagram of the problem is shown in figure 1. The circular
symeetry of the loading enables the deflection and stress condition of

the plate to be represented as functions dependent upon the radial

LF 4~ 7R

distance r. Thus, the physical relationships are expressed in terms
of ordinary differential equations. Y

This work considers the small deflection theory of plates due
to lateral loads. The straine of the neutral surface and the quadratic
terms in the strains due to bending are neglectec. The laws of the
theory of plastic deformatior.s are used instead of elastic stress-
strain relationships.

Naghdi (1) considers the large deflection theory of circular plates
with stretching of the neutral surface. Gleyzal (2), Mostow (3), and
Hill (L), approximate the stress condition for the large deflections
of thin plates by considering only membrane stresses and strains,

1.2 Objective

For & general problem, such as the bending of a plate, several
procedures are available for obtaining a solution. The preferable
method, in any particular case, depends upon the accuracy and infor-
mation desired. The most desirable method is one which ylields the

exact solution. For the plastic bending of a circular plate no such

§7 5 e i g
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exact solution has been found. Therefore, this thesis applied several
general methods of plasticity to obtain approximate solutions and a
comparison is made of the accuracy and labor involved in these methods.

In the actual computation of the example problem, a dimensionless
parameter appears in terms of which the range and accuracy of the
various methods are indicated. The comparison of the results, obtained
by the different methods of solution applied to the problem of the
circular plate, should give some insight into those p-oblems which
present greater mathematical difficulties, such as the bending of
rectangular plates,
1.3 The Kinematic and Equilibrium Equations for the Symmetrical Bend-
ing of Circular Plates.

This section states the kinematic and equilibrium conditions for
the symmetrical bending of circular plates. A complete presentation
of what is mentioned here is given by Timoshenko (5) (Chap. 3).

The following assumptions are made:

a). The defloction of the neutral surface of the plate is of
such a magnitude that the quadratic terms due“to bending are neglected
in the strain formulae,

b). The elongation of the neutral surface and the menbrane stresses
are neglected.

c). Normals to the neutral surface before deflection are normal
to the nputral surface in the deflected state.

d). The normal stress G} is assumed zero throughout the plate.,

e), One additional condition is assumed due to the nature of

the plastic laws. This condition is that the loading is applled proportionally

T e e
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and increases monctonously. Hence, only loading is considered.

In stating the kine-atic relations of the plate the following
notations are used.

w = deflection of the neutral surface from the unstrained to the
strained condition.

ag = léfb = circumferential curvature.

L I[f; = radial curvature
« = radial displacement

z = distance from the neutral surface,

The curvatures are expressed in terms of the deflection as

2
= dw o _dw
Gy = - 1l/r = and e, = - ;? . (1.1)

The geometry of figure 2 suggests the physical significance of eg
and a . The radial radius of curvature, f?, is the radius of curvature
of the intersection of the neutral surface and the vertical plane con-
taining a radius of the plate., The circumferential radius of curvature,
-Pe, is the radius of curvature of the intersection of the neutral
surface and the plane perpendicular to the tansent of the curve in the
neutral surface at 8 = const,

The geometry of figure 3 gives

U~z %; .
Due to the circular symmetry of the problem, the circumferential dis-
placement is zero.

From known formulae for the strains in terms of displacements, the
equations for the radial strain, €. and the circumferential strain, L)

are
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Anvther important equality derived from (1.1) is

d(mg)

—ar "%

The following notation is used to formlate the equilibrium
equations:

p(r) = lateral load per unit area.

Qr = radial shearing force per unit length.

Hr = radial moment per unit length.

Hg = circumferential moment per unit length.

(1.2)

(1.3)

A pictorial representation of these quantities is given in figure L.

The definition of the moments is

h
M}-2£ o;_zdz,

H9-2Sh062dz,
0

where 0~r is the radial stress and O"g is the circumferential stres

(1.k)

It has been assumed that the radial and circumferential stresscs have

point symmetry about z = O,

Consideration of the equilibrium of the forces on the circular

section of the plate shown in figure La. yields

rQr = jr prdr.
)

(1.5)
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The equilibrium equation is found by using the above equality and the

equilibrium of the moments on the element shown in figure Lb

d(rHr) r

—a— Mt é prdr = 0. (1.6)
l.i Development of the Stress-Strain Relationships.

This work is not intended to be a discussion of the relative
merits of the different theories of plasticity; therefore, this section
briefly presents the laws of plasticity used in this paper. A complete
development of the relationships used in this section is given by
Sokolovsky (6) (chap. 1). A thorough explanation of the yield condition
is found in the book of Hill (7) (chap. 2). The theory of plastic
deformations (secant modulus theory) is used.

The plastic stress-strain relainnships are now introduced. The
principal stresses are Ops Ogs and oy The principal strains are
e g and ez.

The mean stress is

0= 1/3 (o, +0g + 7). (1.7)

The mean strain is
e=1/3 (er ‘et ez). (1.8)

The stress deviations are

s; "o, =o(i=r, 0, z). (1.9)

The strain deviations are
o, =& ~¢ (1i=r,0,2). (1.10)
The second stress invariant is

s? - % (s 2 4 2, s 2). (1.11)




The second strain invariant is
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strair deviations.
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8

(1.12), the above relation is formulated as

r.% %8
e. &g e, b4
b).

invariant. This relationship is written as

. S = 2G [; - f(Eﬂ E,

thenf(E) is an even function of E. Thus, the
expressed as

2(E) = 3o B0,

n=1

where the A's are constants,.

c). The material is incompressible,
1
P 3 (er vey o ez) 0
from which it follows that

&, ™ (ee + cr).

~

(1.12)

The following assumptions of the secant .odulus theory are used.

The stress deviations are vroportional to the corresponding

With the use of alrebraic operations and the definitions (1.11) and

(1.13)

The second stress invariant is a function of the second strain

(1.1k)

If the relationship between S and E has point symmetry about the origin,

function, f(B), can be

(1.15)

(1.16)

e A
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This assumption rreatly simplifies the .iathematical formulation of the

problem,
The principal stress deviations and stress invariant are obtained

by using equations (1.7), (1.9), (1.11), and assumption d in section 1.3

that o; = 0O
8

O’g) 2 o

2 ” r -1
p T3l T gt g ) s T -5 ra) (AN
1

s2 - : (o— - 0,05 +c‘92). (1.18)

The princinal strain deviations and strain invariant are obtained with

the aid of ejuations (1.8), (1.10), (1.12), and (1.16):

eL "t € "Ct,e e =- (er + eg) (1.19)

e .2 2
7 e ree, +e (1.20)

With the expressions {1.13), (1.15), (1.17), (1.19), and (1.20), the

principal stresses S, and ob are expressed in terms ol the principal

strains:

€

o =LUG|1 - z X (e ree, cgz)n (e + —g—
Y =T r

(1.21)

3 a=d 2 2 n? i
% LG i1 - E )‘n (er + °r°e * e9 ) (°9 * T)
-

P

These are the stress-strain relations.
1.5 Formulation of the Basic Plate Equations.
This section presents the formulae which are used in the solution

of the bending of a circular plate.
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By substitutine exoressicns (1.1) and (1.21) into ezuations (1..4)

and inteprating, we find the hernding moments

%
Mr'D(l-B) (aroT)

(1.22)
(- ]
Mj=D (1-B) (a9+-§-),
where
8h3
D'TG

(1.23)

2n

B = g 3—)}2‘—:‘3- (cr2 +taa. + a92)n.
The intepration of (1.4) is possible hecause the a and @ are constant
for a piven r by assumption ¢ in section 1.3. The constant D is the
customary expression for the flexural rieidity of a plate in elasticity.
The quantity B expresses the non-linearity characteristic of the plastic
stress-strain relationship.

The solution for the bending of the ciicula. plate is found when
Mr’ Hg, 8.y G5 and w are found as functions of r. The five relation-
ships in (1.1), (1.3), (1.6), (1.22) are sufficient for the determi-

nation of the above functions. The combination of these five ejuaticns

yields




(1.24)
2 I heP| /2 \2 /2 2l n

L a1 an) 22 Py d'v)° (& ldw) 1dw

dr(| 4.2  2rdg 2n+3 T2 r r dr

dr
dev ldw } n

Jlladh 1 oav) e A p
P |IF T T Ty T
s @, &, and w are not found by solvinr equaticn
0 r’ e

n-

The values M

(1.2L4) directly. Different dependent variables are introduced in this

thesis which reduce the nmumerical work in the various approximate
methods,
Table I is compiled for future reference. The formilae in this

table are (1.1), (1.3), (1.6), (1.22), and (1.23).

TABLE I
l4d
% '?3¥ (1.)
d(rag)
% dr (I1.)
d(rM ) r
_arL S 5 prdr = O (II1.)
% 9.
M= D(1 - B) (c:;r + T)’ My - D(1 - B) (ae + T) (Iv.)
3 o0 3Xh
D-%—G,B-; —5—3— (a. +crce+ae2)n (v.)
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CHAPTER 11

THZ METHOD OF SOKOLOVSKY

2.1 Mathematical Permulation of the Problem.

Sokolovsky (6) (chap. li) treats the problem of the bending of
a circular plate symnetrically loaded. In orinciple, Sokolovsky
reduces forrmlae II, III, and IV into two similtaneous first order
ordinary differential equations. By the introduction of two new
variables, a magnitude factor A and an angular factor w, which re-

place the curvatures a. and a., these two differential equations can

9’
be expressed in a convenient form. The variables A and w are defined

in terms of @ and a. as
T (]

a = - g% sin (0 - n/6), ag = 2% sin (o + n/6). (2.1)

With the use of (2.1), the following identity for A is formed:

2 .. 2 2

A =a " +a 0, +arf. (2.2)
A combination of (1.2), (1.20), and (2.2) yields

2 = 222, (2.3)

which shows that the factor z is the proportionality constant between
E and A. This same proportionality exists between the principal strains
and the curvatures as seen in (1.2).
A graphical representation of w is given in figures Sa and Sb.
The normal of the plane of figure 5b makes ejual angles with the
three orthogonal axes a ', a ', - (& ' + ay') of figure 5a. This

°]
plane is called the octahedral plane. The axes shown in figure 5b

10
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are the projections of the axes of fipure Sa. A vector with the

components V2/3 e.'s 12/3 ag', and /2/3 [:—- (@ '+ ae')‘_], has the
length 2//3A and lies in the plane of figure Sb. The vector 2//3A
lies at an anrle w, as shown in figure 5b. It has the orthogonal

projections a. and a. on the axes cr and ag in the octahedral plane,

e
When the proportional nrincipal strains are substituted for the
curvatures in the above graphical representation, the wvector 2//31
becomes the octahedral shearing strain.

With the suhstitution of (2.1) and (2.2) in IV and V of Table I,

the moments are expressed as

Mr =D (1 -B) A cos (o + n/6), (2.4)
MO =D (1L -B) A cos (w~-1n/6),

where

n
B e ﬁ 0 (ha)2", (2.5)
n-

The substitution of (2.1) into II of Table I yields

r | sin (0 + n/6) % + A cos (w + n/6) g?] + f-3A sin w = 0. (2.6)

Similarly, the subsiitution of (2.Lh) into II of Table I gives

| e (@ + %/6) (1- ) § - (1 - B) & sin (w + 7/6) L

- (1-B)Asinw+ gr rp (r) dr/D = O. (2.7)

These two equations are reorganized into a more convenient form for
mmerical calculations when the derivatives of w and A are separated.

This separation ylelds

o ok Nind il S

i
{




r \?I-B)—Aa Aggsinz (m+n/6)]g‘%-f3_lizg—fsinwcos (o + n/€)

+A (1 -B)sin2 w - sin (o + n/6) Sr rp(r) dr/D = 0 (2.8)
[0}
El-B)-A:—f+A§E sin? (o + n/6) %+2A(1-a) sin %o
+ cos (w + n/6) gr rp(r) dr/D = 0. (2.9)

Bquations (2.8) and (2.9) are the desired first order ordinary
differential equaticns. They can be solved by numerical nethods when
definite stress-strain laws and boundary conditicns are given. When
r =0 and A ¥ 0, equations (2.8) and (2.%) both yield @ = 0 and A

is finite. The substitution of w = O into (2.4) gives

= = 3 -
M= M f? D(1 - B) A,

Expression II1 Table I also yields that Hr = Hg at the center of the
plate where r = O. Thus, one boundary condition is:
At the center of the plate where r = 0O

Hr = M or w=0. (2.10)

Two boundary conditions are necessary to solve equations (2.8) and

(2.9)e The second boundarv condition is obtained by physical restrictions
on the curvatures or moments at the outer edge of the plate., With the
use of either equations (2.1) or (2.4) and the given boundary conditions
at the outer edge of the plate, values for A or w are determined for

this outer boundary. In the next two sections, a method of solution

is demonstrated by solving an example prcblem,
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2.2 The Illustrative Example.

An 1llusirative example of a si:ply su-ported plate with constant
pressure p is solved to indicate the method of solution for (2.8) and
(2.9). The stress-strain relation (1.lk) is assumed as

S =26 (1 -)E%)E. (2.11)
A graphical representation of this curve is given in fipure 6 which
shows a horizontal tangent at E = Eo. From the condition of a hori-

zontal tangent at Eo, the constant X\ is determined by
d S/4E = 26 (1 - EZ) = O,
from which it follows
A =1/3 302. (2.12)

Two new dimensionless variables a and y are introduced to simplify

the form of (2.8) and (2.9) for this oxample. These variables are

expressed in terms of A and r as
a=a/n,y= 020 pm/2, (2.13)

where the constaat Ao is defined by

h2A02 - 1/3 2. (2.1k)

The maximum E must occur at z = h, and B is the maximum permissible
strain invariant. A combination of (2.3), (2.12), and (2.1k) gives
202 s h2A02; thus, Ao can be interpreted as a measure of the maximum
permissible strain condition in the plate. This interpretation limits
the value of a to 0=a <1, The factor B, which is given in expression

(2.5), is given in terms of a as

s ot &0

sk

NS




B = -g. Ah2a% =0.2a° (2.15)

for the stress-strain relation (2.11). When the pressure p is constant,

the load integral is
o 2
jprdr - pr /2. (2.16)
o

With the use of (2.15) and (2.16), ejuations (2.8) and (2.9) are

expressed in terms of the variables w, a, and y as

ya |1 - 0.6a% + O.Im2 sin2 (o + n/6):l g——; - 0.6928 a’ ain « cos (w + n/6)
+a (1- 0.282) 8in 2 w - 0.866 y2 8in (w + r/6) = 0O (2.17)
y‘[i - 0.6a2 + 0.h82 sin2(m + n/é}] a8 2a (1 - 0.282) sin2w

dy

+ 0.866 y2 cos (w+ n/6) =0 (2.18)

For a simply supported plate the radial moment is zero at the
outer edge of the plate. From (2.4), this boundary condition is
evaluated as:

1). At the outer =dge of the plate, r = b
M =0 or o(Y) = n/3 where Y= [X1/2 h pb2/é] 1/2, (2.19)

2). At the center of the plate, r = 0, expression (2.10) gives

Mr = Mg or w=0 at y=0. (2.20)

Conditions (2.19) and (2.20) determine unique solutions of (2.17)
and (2.18).
A step by step numerical integration of (2.17) and (2.18) can be

started when a value for “a®™ av 7 = O is chosen. This step by step

DEPOENIN ¥ SyveRRe PR
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integration is continued until w = n/3, and bLy condition (2.19) the
value of ¥, where w = n/3, determines the outer boundary of the plate,
When Y is orescribed, a series of starting values for "a" are assumed.
These starting values are adjusted until one gives the correct Y at

@ y) = /3. In the next secticn the numerical procedure is explained
by an exarple where the initial conditions are y = 0, w = 0, and

a = 0.5,

2.3 The Mumerical Integration:

A numerical method used for computational work should have a
checking procedure. When evaluation of the numerical steps becomes
tedious, calculation errors arise unless an automatic check is available.

An accurate procedure satisfying the above conditions is Milne's
Method. Scarborough (8) (pp 245 and 295) gives a thorough explanation

of this process. 1In thig method, the following formulae are used:
Milne's formula

(1) . L A dw dw dw
“nel © “n-3 * _3_2 e 'a?ln-Z “dyh-1* - Eln ’ (2.21)
Simpson's formula, which is used as a check,
() . A (dm dwf , do )
el " 1 * F a?'n-l * h3§1n * a;l n+l, (2.22)
and the error term
error -%? é’r(i% - wxgﬂ s (2.23)

Milne's formla passes a curve through four points and estimates
the value of the function at the fifth point by an extrapolation of

the curve, (see figure 7). When the value of wr(xiL:)L is calculated with

s : : - - )

gy I T YRS 2
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the aid of formula (2.21), the given differential equation is used

to find the slope g—? n+l®

The value of gg n+l obtained from the
above procedure is used in Simpson's formula, (2.22), to make a

(2)
second approximation for ©o41°

When exact values are used in (2.21) and (2.22), formla (2.21)

.,

gives an o . which is too small while (2.22) gives an @, “hich
is too large. A consideration of the terms which are neglected in
the extrapolation formilae (2.21) and (2.22) shows that the maximum
deviation from the true curve is eiven by the formla (2.23;. Thus,
formula (2.22) provides a check on the numerical calculations for
(2.21), and (2.23) gives a means of determining the accuracy of the
approximation method.

Before Milne's Method can be applied, the values of the function
and its first derivatives at four points must be obtained. The wvalue 1
of the function at thz second point is found with the aid of Buler's

averaging method. The formula used in this method is

e 5. 2h). @20

The value of the function at the third and fourth points is found by

A iadrlan

applying Simpson's formila, (2.22). The mumerical procedure is
explained by showing the steps involved in solving equations (2.17)
and (2.18) when the initial conditions are ©o) ™ 0 and 80 " %

The solutions of equations (2.15) and (2.16) for dw/dy and
da/dy are
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E.69?8 adsin o cos (w + n/6) - a(1 - 0.282)sin 2 @

+ 0,866 yzsin (o + n[éi

dw/dy =
ya |l - O.6a2 + O.ha2 sin” (0 + n/éﬂ
(2.25)
2a(l - 0.2a%) sine + 0.866 3° cos (w + 1/6)
- da/dy = - - L
y[1 - 0.6a% + 0.4a? sir? (o + n/6)] (2.26)
For the initial starting value of ® = 0, formulae (2.25) and (2.26)
yield indeterminate equations for g? and %%. These equations are of

the form 0/0. The evaluation of (2.25) and (2.26) at @ = O can be
accomplished by expanding sin w ard sin2w about @ = 0 in terms of y.

These expansions are

2
- o 4o ;dm
sin Ya-y'o" T g}'o*...
dw dzm
ain2m-2yd—§o*y2d—-§ + eee
y [0}

With the substitution of these expansions into (2.25) and (2.26),
the limits of the expressions for the derivatives as y0 are

lim Ao dw

.- 1lim da
y»0 Jdy dy

o? y-ooa?

=0.

This procedure yields starting values for dw/dy and da/dy of

%-o , giy-o. (2.27)

For an increment in y, steps of 0.05 are chosen. The initial increment
in y should be small because of the irregular behavior of w at the
origin. Als%o, the checking methods do not apply until the values for

a, o, dw/dy, and da/dy are calculated for four values of y.

L - o
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First step: Calculation for the point y = 0.0F.

The values w = 0 and a = 0.5 in the row y = O in Table II are
the prescribed initial conditions. First approximations for w and a at
y = 0.05 are assumed to be w = 0 and a = 0.5. First avproximations
for dw/dy and da/iy at y = 0.05 are obtained by using these values of
w and a in formlae (2.25) and (2.26). The newly calculated dw/dy
and da/dy are substituted in formlae (2.2L) to obtain second aprroxi-
mations of w and a. These values of w and a can be substituted in
formulae (2.25) and (2.26) to calculate second approximations for
dw/dy and da/dy. With these values of the derivatives, third approxi-
mations for ® and a are obtained from the expression (2,24).

This process of approximation is repeated until the values for
dw/dy and da/dy remain stationary in which case the w and a given by
(2.24) remain constant. These statiorary values of w, ™a" and their
derivatives are given in the row y = 0.05 " Table II,

In the above procedure, the values of o oscillate about the
stationary w with a decreasing amplitude., With the use of slirht
alterations in the value of w towards the center of the oscillation,
the number of calculations can be reduced. The magnitude of these
alterations can be estimated after the first two calculations.

Second Step: Calculations for the points y =0.10 and y = 0.15.

Approximate values of w and a at y = 0,10 are obtained with the
use of Simpson's formula, (2.27). In Simpson's formula, however, the
value of the derivative at the point to be calculated must be known.

Therefore, an estimation of this derivative is made by a linear extrapolation
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of the two preceding derivatives. The approximate values of w and a
calculated by $impson's formula are substituted into expressions (2.295)
and (2.26) to obtain new estimates of the derivatives., These values
of the derivatives are used to make new approximations for w and "a®
with Simpson's formula. Two calculations are usually sufficient to
obtain the desired accuracy for the value of the functions and their
derivatives. Exectly this same procedure is used to make the calculations
for @ and "a® at y = 0.15. The results of these calculations are shown
in Table II.

Third Stept Calculations for further values of y.

Once four values of w, a, and their derivatives are obtained, the
regular numerical integration procedure is adopted. Formula (2.21)
gives the values w(ii and a(l) for y = 0.2. These values are substi-

n n+l

tuted into formmlae (2.25) and (2.26) to calculate dw/dy ney 30d

da/dy ne1® These values of w, a, and their derivatives are entered
in the row y = 0.2.
A1l the quantities which are necessary to use formla (2.22)
are obtained., The second calculations for aﬁf{ and aéii are made
with Simpson's formila. An estimate of the error is made with expression
(2.23) where mistakes in the numerical work or too large a choice of
the increment produce & maximum error which is tovo large.
The accuracy of this method is such that larger increments can
be used once enough starting values are calculated. Thus, when values

for w, a, and their Jderivatives are calculated up to y = 0.3, enough

information is available to use Milne's Method with increments of

W S
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Yy = 0.1, Table III is constructed to show the calculataons for incre-
ments of y = 0,1,

Fourth Step:s Calculation of the outer boundary of the plate.

The boundary condition for w at the outer edge of the plate is
w=n/3 = 1,0472. In this example the value of w at y = 1.1 is greater
that n/3.

An extrapolation procedure is used to obtain the outer boundary.
The equation for this extrapolation is based on Taylor's expansion

expressed in terms of differences.

e Y

where (2.28)

2
By = Gyy ~ G 0 BT T yp T 24 * G
The value of "n®™ is 2= n=3,
A pictorial representation is e¢iven in figure 7b. All the quantities
of the above equation are known except n. The determination of n
gives sufficient information to obtain the outer boundary of the plate.

Reorganization of formla (2.28) gives this quadratic eguation for n.

Oite n2 (mk+2 - 2”k+1 * mk) +n (- Geap * hwk+l - 3“%) ol (a% - wk)
(2.29)

The quantity « is 1.0L72. In this example, the solution of (2.29)

is n = 2.558. The formula for the outer boundary cf the plate is

I=y

b~ T tnaY. (2.30)

In this example y, = 0.8, 8y = 0.1, and n = 2.558; therefore, Y is

Y =1,0558. Equation (2.28) is reorganized and written in terms of a.
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In (2.31) all the quantities are known except a; thus the value of

®a® at the outer boundary of the plate can be found with formula (2.31).
Table III gives the numerical results of this example while figure 8

is the graphical presentation. With the use of (2.13), (2.1L), and

(2.19), equations (2.1) are expressed as

2

ar--% 2!52%— sin (o - n/6)
\ (2.32)
ag -%%Eg- sin (w + n/6) ,
and (2.4) as
M = (1—-%2—.‘223 pb2 cos (w + n/6),
r ¥E)
(2.33)

2
My '%5:-%2&& pb2 cos (w = n/6) .

From the results of the solution of (2.32) for L the deflection

of the mean surface of the plate, w(r), is calculated by a aumerical

integration of (2.3L4), the transformed equation I of Table I.

Vir) " f ra, dr  where Y(p) " 0. (2.3L4)

The actual calculations for g and w(r) are performed in Chapter 6

where the different approximate methods are compared.



0.05
0.10
0.15
0.20
0.25
0.30

0.0
0.1
0.2
0.3
O.h
0.5
0.6
0.7
0.8
0.9
0.10
1.0558

TABLE Il

o
0
0.0248
0.0501
0.0766
0.1045
0.1353
0.1672

@

0
0.0006
0.0025
0.0056
0.0102
0.0161

0.0238

TABLE III

o
0
0,0501
0.1045
0.1672
0.2484
0.3678
0.5377
0.8038
1.3603
2.4360
4.5692

@
0
0.0025
0.0102
0.0238
0.0452
0.0743
0.1197
0.18L4
0.2859
0.4733
0.8023
1.0472

- a'
0
0.0428
0.0854
0.1276
0.1692
0.2099
0.2L97

=g
0

0.0854
0.1692
0.2497
0.3257
0.3952
0.4587
0.5103
0.5L12
0.5207
0.3680

a
.5
0.4989
0.4957
0.4904
0.L4830
0.4735
0.4620

a
0.5
0.4957
0.4830
0.4620
0.4331
0.3970
0.3545
0.3055
0.2528
0.1984
0.1517

0.12”
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2.4 Evaluation of the Method of Sokolovsky.

The method of Sokolovsky gives a procedure for obtaininr a numerical
solution of equations II, III, and IV of Table I. This solution is
obtained by the simultaneous interration of the two non-linear first
order differential equations (2.8) and (2.9). The actual numerical
integration of these equations is greatly simplified by assuming
expression (2.11) for a stress-strain rel=tion. Expression (2.11)
is a perabolic approximation for the actual stress-strain relation-
ship. The accuracy of the results given in figure 8 and 9 depends
upon the accuracy of this assumption.. Figure 9 is a rraph showing
the dependence of w and ®a® upon the radius of the plate, r, when
the initial values of a = 0.25, a = 0,50 and a = 1,00 are used to
calculate the example of section 2.2.

A check on the accuracy of each step of the numerical integration
procedure is civen by formla (2.23). Though the error of each step
is small, the error of the whole procedure is cumilative. Equations
(2.32) and (2.33) show that the cumilative error in determining Y
altoers the value of the imoments and curvatures throughout the plate,
When the same size increment is used, the behavior of the integration
process is such that the error is greater for smaller initial "a®",
Thus, this method gives better results for plates which are loaded
near to the limiting strain condition, or for initial ®a® approxi-
mately one.

The method of this chapter is an inverse method. The variable

®a® which is a measure of the strain condition of the plate, is civen
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an initial value, and th2 boundary condition (2.19) determines the

e hpbe/D. The parameter Y determines the

parameter W ejqual to Xl/
physical properties of the plate and the permissible load. Any one of
the factors in Y can be adjusted to give the correct boundary value of
Y. But if a plate of a given material and specific dimensions has a
definite pressure applied, Y is determined. Thus, & saries of calcu-
lations are necessary to adjust the initial value of ®a®™ so that the
correct value of Y occurs at the boundary of the plate,

The calculation of an actual example, for any given initial con-
ditions, can he performed within a day. This calculation gives w
and "a® as a function of y in the form of a table or a praph. Thus,
the bending moments, curvatures, and deflections of the plate, given
by (2.32), (2.33), and (2.3L), cannot be expressed analytically. A
complete description of the physical behavior of the plate can be
found to any desired accuracy when sufficiently small increments are
used. But, this method is too lengthy for quick estimates of the
moments, curvatures, or displacements for plates with prescribed
dimensions. In the chapters which follow several aporoximate methods
are described which can provide these quick estimates. The last chapter

of this thesis presents a comparison of the results cof these various

methods.
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CHAPTZR III

THE ITERATION METHOD

3.1 The Mathematical Deveioprent of the Method.

The papver by Ilyushir {9) develops an approximate method for the

solution of problems with plastic stress-strain relations. This method

leads to differential ejquations which can be solved by an iteration
procedure, and is used here to obtain ar approximate solution for the
problem of the hendinc of a circular plate,

A second order ordinary differential eguation is obtained by

the substitution of formulae II and IV, into III and V of Ta®le I,

2 r 2
de da rp(r)dr de da
S T L PP
r dr
da
‘T iy (3.1)
where
. |
O BX h 2 <?aé§ da9 >
Be2 ey [T \®) * Mm% | e

The iteration method of Ilyushin is now applied to equ~tion (3.1).

Equation (3.1) is reorganized into

1 d(r ag )
= B(’T)‘f“e]’sd"e
= 2 dr/ ) (3.3)
where
1 (F
Q. == g rp(r)dr. (1.5)
25
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The terms on the rirht “and side of (3.3) are separated into

LA (3.4)

and
da da ?
d e B
vp"D(fF E(’ 'dr’%“ogl ‘3 —d'S) (3.6)

The expression on the left hand side of (3.3) is encountered in the
solution for the elastic bending of a circular plate. When the stress-
strain relation ic linear, the quantity B, given by (3.2) is zero. The

linear formula for a circular plate is

= v
d {1d 2 e
a[;ﬁ‘“sﬂ -5 -

From (3.4) and (3.5), equation (3.3) can be rewritten as

o

d |14 ,2 1
EleEs “Qz -5 (V, + vp) : (3.6)

The quantity Vp, which is interpreted as a pserdo-shearing force
due to the non-linear stress strain relation, can he evaluated in terms
of an estimated ag as a function of r. An approximate solution for

&, is then found by solving (3.6) with the shear V, and the estimated

e
pseudo-shear Vp. The approximate solution of this section will not
be found directly from (3.3), but a convenient form suitable for an
iteration procedure is derived from (3.3) by using a Green's Function.
The example of a simply supported plate is used to demonstrate this
method.

The boundary conditions for a simply supported plate are:

a). At the center of the plate

r =0, M =M, e is finite (3.7)

it a1
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b). A% the outer edre of the viate
ca
r=b, M =0, r —=+5a, =0. (3.8)

Expressions (3.7) and (3.8) are derived iy substituting the given

values of the :oments into forrmlae III, Table I.

Equation (3.3) will be expressed in an integral form from which

&g can be found by integration for any arbitrary shear force. For

this integral representation, a solution, satisfying the toundary
conditions (3.7) and (3.8), is required for

RGN BEEERCS 6.9

where

] (§) = 0, for 0Sr<§, §<r = b,

and at r =€ , &6 (&) increases grd Lo G

=37 QZI one unit. The first

intepraticn of (3.9) yields

1d .2 .
;a-;(rae)-cl O_r<§
(3.10)
ld 2
;a_;(r “g)'cl—l E<rs<b,
The second integration of (3.9) yields
Cl 02
Gy = =3+ 0O=r<¥ (3.11)
r
(C, - 1) C
ag = —13— + —% §<r:b, (3.12)
r

The boundary conditions (3.7) and (3.8) and the condition that LA

and C_.

is continuous at r = § determine the three constants Cl, C2, 3

L
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These constants are

2
Cl '3-3*(b)’C2 U’CB T’
' which upon substitution into (3.11) and (3.12) determine the solution
i for ce as

e

09.1%1[30(.{7)5:} 0Osr<¥
ag-%llz—%-)‘?*B(-;L)—j Fersbo

The particular soluticn (3.13) is used to obtain the effect of

L

(3.13)

—

an arbitrarily distributed shearing force, V(¥ ). The nagnitude of

the incremental shearing force acting on the arca d§ atr =% is

s (5) X as.

This shearing force produces an incremental change in a, of

(2]
d ag(r) = ﬁ%ﬂ [3 + (-%-)?‘l 0<re¥§
d cg(r) = Ygag—d—i E%)z +3 (-rL)"i' ’§<r < b,

Due to the linearity of equation (3.9), the effects of the incre-

.

mental shearing forces can be integrated to form the total increase

in g caused by the distributed shearing force V(¥ ).
is

This increase

So(r) " 3({—)2 1‘(155"2"5 *) 3 Ly L a&

éb%ﬂg_)df' - (3.1h)
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The integral form cf ejuation (3.3) is o®tained wi.en the ex-ressions

(3.4) and (3.5) are substituted into (3.1L) fcr the artitrary shearing
force V(§ ).

V(§) = v +vp.

The result of the above procedure, after recrganization and sev-:ral

integrations by parts to eliminate the derivatives of B, is

1 t Q 2 b Q
%(r) " &) nz(%) aF + 3 S n'r'(‘f—) ak *-S 3

o2 ibt_){f(ag“g_;;_@ Ba§ + 32 f%(a %-;%)ij.‘ (3.15)
o
1 (P dag

“§) Ig ¥f-

The form of this ejuation ensures the satisfaction of the boundary
conditions for the simply supportad plate. Boundary conditions (3.7)
and (3.8) are applied in the forrmlation of the Green's Function which
determines g for arbitrarily distrihuted shearing forces. For a
plate subjected to different boundary conditions, equations (3.7)
and (3.8) are replaced by new equations. The subsequent for mlae
are altered, but the procedure remains the same.

Bxpression (3.15) is the desired integral form of (3.3) for
the application of the iteration method. The explanation of this
iteration process is explained in the next section by solving the

example problem,
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The integral form cf ejuation (3.3) is ohtained wien the ex-ressions
(3.4) and (3.5) are substituted into (3.14) for the arbiirary shearing
force V(§ ).

V(§) =V, ¢+ LA
The result of the above procedure, after recrganization and sev-cral
integrations by parts to eliminate the derivatives of B, is

b Q Q b Q
1 2 1
%) "5 ) 5’-(-{7) af +3

( ds-: +- 5 4§

+

8|+

rl‘
o=
b de da
é(ag+%—af §+g§’ +§—a-§9)m§‘ (3.15)
b da
Bdg .
2 75

The form of this ejuation ensures the satisfaction of the boundary

=

conditions for the simply supported plate. Boundary conditions (3.7)
and (3.8 are spplied in the forrmlation of the Green's Function which

determines a, for arbitrarily distributed shearing forces. For a

(¢)
plate subjected to different boundary conditions, equations (3.7)
and (3.8) are replaced by new equations. The subsequent for wulae
are aliered, but the procedure remains the same.

Expression (3.15) is the desired integral form of (3.3) for
the application of the iteration method., The explanation cof this
iteration process is explained in the next section by solving the

example problem,
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3.2 The Numerical ixample.

The exammple vroblem of section 2.2 is used to illustrate the
iteration orocess. In this example the load is a constant.
p(r) = p
r
Qr = 1/r 2 prdr = pr/2 (3.16)

A parabolic stress-strain relation is assumed which determines the

quantity B from (3.2) as

2 2 dag dag 2
B = 0.6 \n° [3a° +3a (r a;-) + (r a;—) (3.17)

With the substitution of (3.16) into equation (3.15), g is
2 b de
b 2 1 (*]
“o(r)'E'BﬁE'(%)]‘Eg bfé’(“e*‘é‘)mf
da da
3 0 1 0
*5?5‘%*%‘7"”5 "k fTB"? -

The iteration procedure is now applied to equation (3.18).

(3.18)

a). The elastic solution.

The first step of the iteration process is to assune that A = O,
This is equivalent to assuming that B is zero or that the pscudo-
shearing force Vp, equation (3.5), is not present. The g calculated

from this assumption is riven by a plate with an elastic stress-strain

relation as

ol®) - ggf, [—_7 37, (3.19)

which is obtajned by evaluating (3.18) when B = 0,
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b). First a-croximation for ag.

The first aprroximation for a. is found ty integrating (3.1%8)

e
where (3.18) is evaluated by substituting (3.17) for B, and aée)
from forrmla (3.19) for age We find
2
(1) _ e, pb
Gg(r) Gg + Em Yhfl (3.20)

P =22 o2
£ = 0.2327 = 0.2871(5)7 + 0.1764(E)* - 0.0u1R9(E)®
10 - b . b -Oult9(g) -

The dimensionless parameter Y is the same parameter encountered
in section (2.2). This step is equivalent to approximating the
pseudo-shearing force Vp, forrmla (3.5), in terms of the elastic

effects on Gge The apparent shearing force Vp, due to the plastic

behavior of the material, increases age

c)e The second approximation for g
The value fc 1é1) obtained in expression (3.20) can be used to

evaluate B and gy in (3.17) and (3.18) as functions of r. Then

expression (3.18) is integrated for the second approximation for

2
"éz) - "e()e) * ?ﬁﬁ yhfl Y yafz Y 012(5\ el

= 0.0LS5 - 0.0931 (%)2 +0.113 (%)h - 0.0793 (%)6 + 0.0302 (§)8

T2
- 0.00usk ()*°.

In this approximation another estimation for the avparent shecring

force V_ is made by using a rectified age The increase in the estinated

aél) over aée) gives a preater value for aéz) than uél). The term

———
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012(1) denotes terss containing the twelfth and hicher powers of Y,
These terms are altered on further approximations for Ggs yet they
are not needed for the calculation of the twelfth power terns in Y
in the next approximation.

d). The a™® approxi~ation for &

*

e
For the nth anproximation of Ggs cén-l) i3 used to evaluate the
intepral (3.18). The form of this solution is
C(n) - G(e) . Eg i hkf +0 (Y)
8 8 c= T Tk T Phnen) . (3.22)

The term Yhnfn is the additional correction for Gge This term is not
altered in further approximations. The terms of higher order than
Lkn in the parameter Y can be neglected and do not effect the next
approximation for the term containing Yhn’h. The elimination of the
terms Oyn#h(Y) in each aporoximation greatly decrcases the numerical
work.

e). The check.

For each approximation a new function, fn’ is obtained. This
function is the only term which has the parameter Y to the Ln power.
For the computations to be correct, all the functions, fk’ must
satisfy the boundary conditions. After each approximation the newly
acquired function fn should be substituted into exvression (3.8)
to check the computations.

The functions fl and f2 are evaluated in Table IV for various
ratios of r/b. These values can be used to ralerlate oéz) for various

loads and values of the parameter Y,

s SIS
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TARLE 1V
Evaluaticn of functions appearing in

the Iteration Method. (Formmla 3.21)

o | 7-36m? | £, ] £, [w/o)?]
0 7.00 0.233 0.0L55
0.1 6.97 0.230 0.0lké
D42 6.88 04222 0.0L20
0.3 6.73 0.208 0.0380
0.k 6.52 0.191 0.0332
0.5 6.25  oan 0.0282
. 0.6 5.92 0.150 0.0234
0.7 5.53 0.129 0.0193
0.8 5.08 0.110 0.0160
0.9 k.57 0.0936 0.0135
1.0 4.00 0.0801 0.0118

3.3 Bvaluation of the Method.
The iteration method provides a solution for the plastic
bendinz of a circular plate in terms of the dimensionless paraneter Y

and functions of r. In section 2.2 values of Y are calculated for
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various degrees of plastic yielding. For a condition of complete
plastic yielding at the center of the plate Y = 1,368. Therefore,
the ranpe of Y is 0 =7 =]1,386, The accuracy of this method for a
given rmumber of aoproximatiorns depends upon the converrence of fk
and the value of Y.

With the use of Table IV, an estimate of the maximum correction

for %o between a firsi and second approximation is about 7 percent.

This estimate is obtained from

P,

100 .
7-3E)° + P

percent correction =

(3.23)

The error involved in the two term approximation should be less than

this value.

Bach iteration increases the esiimated value of Gg> which makes
the series of the aporoximate pseudo shearing force Vén) a monotonously
increasing series. Physical considerations make it plausible that the
correct Vp i3 the 1limit of this series or that the iteration method
is convergent. Panferov (5) treats the problen of convergence for
this method mathematically.

The exact solution for @, in terms of the infinite series obtained

°]
by the iteration procedure is

2
g = E-gb—[? - 3(‘%)2 + ﬁ !hkfk] . (3.2h)

The deviation from the nth approximation for the cén) given by (3.22)

and the exact ag is
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2 e
(n) b Lk
G -a - Y f, e (3.25)
o (<} Eab‘k_:ml: k

Expression (3.25) shows that the sequence ag - aén) converges more

slowly the greater the parameter Y. This result follows from the
consideration that the greater the value of the parameter Y, which
indicates the extent of plastic 2training, the greater is the difference

- aée). Thus, a greater number of approximations are needed to

%
correct the larger initial error for large values of the parameter Y.
When the desired accuracy must be preater than that given by
a two term approximation, Sokolovsky's Method is preferatle. The
mmerical work for higher term approximations of the iteration method
is excessive. This method has advantages over Sokolovsky's Method
because the approximations involve only polynomials in r which can
be integrated or differentiated to determine the deflection and G-
The mathematical avproach of the iteration method is not as direct as
Sokolovsky's Method, but the actual calculations are shorter for any
problem with a given load distribution and boundary conditions when
the two term approximation is used. Only one set of calculations is
needed for any outer radius of the plate or magnitude of the para-

meter determining the load distribution.

g P —

P TP




CHAPTER IV

THE APPLICATION OF POTENTIAL ENERGY

L.l Introduction to the Minimum Potential Pnergy Method.

When energy methods or variational principles are used, the
variational principle should be thourht of as the basic law govern-
ing the behavior of the system. The behavior of the system is de-
termined by a definite variational procedure upon the energy or equiva-
lent quantity of the complete system. This method of approach differs
from the procedure of the previous chapters where the behavior of
every element is analyzed. Both methods are equivalent;, but the
assumed fundamental concepts are different.

The variational principle used in this ctapter is the principle
of minimum potential energy. Ilyushin (9) and Phillips (10) give a
general development of the principle of minimum potential energy.
Greenberg (16) treats the subject of variational methods for the theory
of plastic flow and the theory of plastic deformations. His report
gives a thorough development and includes the original references for
the various variational principles.

The next section directly approaches the problem of the deformation
of a circular plate using the minimum potential energy method. The
problem is expressed in terms of the -woments, curvatures, and deflections

of the plate.

L,2 Formulation of the Minimum Potential Energy Method for the Bending
of Circular Plates.

36
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For the moment—curvature relations IV of Table I, the strain

energy per unit of a plate is expressed in terms of A as

22
W= S .D_(.lz_"_ﬁl dAZ . (L.1)
0
The potential energy for the plate is
b
dmon( (- pu) mar. (L.2)
()

For the variational principle of this section the following definitions
are necessarys

1). Admissible displacements are displacements which agree
with the prescribed boundary conditions.

2). Admissible curvatures are curvatures which satisfy ejquations
I and II of Table I throughout the plate, where the w in equation I
of Table I is an admissible displacement.

3). Admissible moments are moments derived from admissivle
curvatures by equations IV of Table I. The load p is a given quantity
which is not varied. From equations (2.2} for A and (L.l) for W, we
find that'ﬁ can be expressed in terms of only the admissible curvatures
and displacements.

The principle of minimum potential energy states that the admissible
curvatures and displacements which render § a minimm yield admissible
moments that satisfy the equilibrium condition III of Table I. Thus,
these curvatures are a solution for the bending of a circular plate
which satis{y equations I, II, III, and IV of Table I. The proof of

this principle follows:
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A necessary condition for § to be a mirimum is that the first
variation of § it zero for all admissible curvatures and displace-

ments. Hence,

- b 2 2 ‘
D(1 - B) oA D(1 - B) oA
5Q = 2n é [:—L7?__-l 35; Gar + ( 35; 609 - pbw| rdr = O
(k.3)

From the moment-curvature relations III of Table I and formula (2.2),

the moments are expressed in terms of the curvatures as

_pa-B) a® . _p@a-B) a’
R Bl W J—z—&; (.b)

The substitution of eguations (L.L) into (L.3) yields

b
S (Ma_ + MBa, - pbw) rdr = O (4.5)
[¢]

The variations of the displacements and curvatures mst satisfy

equations 1 and II of Table I:

&--ld&'l,
r dr

(]
(L.6)
d(r&ce)
6a = .
r dr
With the substitution of the following identities
b d(r&ae) > b b d(er)
é erTdr' r Hr &elo-o T&Gerdr
Sb d(rHr)
=0 - T 636 rdr (ho?)

(o]

e o i A
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£ ow e = o (" rpar o 7 (17 o) |- 22080 o
e} [e]
(L.7) .
b
. (,g’mdaE%%sﬂ]m
and ejuations (L.6) into (L.5), we find
d(rH)
j_dr_-n +§rpd sa, rdr = 0 (4.8)

When expression (4.8) is satisfied for all possible admissible vari-
ations of LY the bracketed term rmust be identically zero. This
bracketed term is the equilibrium equation IV of Table I; thus, the
principle of minimum potential energy is proved.

4.3 Approximate Methods.

Two approximate methods are available for the solution of equations
(Le2) and (L.8). These methods place restrictions upon arbitrary para-
meters in an assumed form of a solution. The explanation of these two
methods follows:

The first method, the Rayleigh-Ritz Method, assumes an approxi-

mate form of the deflection w with the adjustable parameters Ci,

n
v -{;ci Y4 () (L.9)

where each wy satisfies the boundary condition imposed upon the plate.
An approximation for the potential energy of the plate is found by

using expression (L4.9) to evaluate the integral (L.2).

I= fb EG) - p(r)q rdr (L.10)
(o]
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For the calculation of W(W), the curvatures are obtained with equations

I and II of Table I, The parameters C, are varied to give a stationary

i
value of the integral (4.10) by settineg its partial derivative with
respect to each of the varameters equal to zero.

aI/aci -0 i = 1y, seny 0 (h.11)

Equations (L.1l) are n equations which determine the n unknown para-
meters Ci' The extremum of I is found for the restricted set of
admissible displacements w. Other functions not contained in the
above set may yield a lower potential energy; therefore, this method
only gives an approximation for the strain condition of the plate.
The second method, Galerkin's Method, uses equation (4.8) to

make an approximation for @

o° This method assumes an approximate
ey with the parameters Ci as
o n
Ge - iz. ci dei(r). (holz)

Each 8oy should satisfy the boundary conditions of the plate. The

C, are determined by evaluating

i
(b < [%Mr(abil 4
) ———d-r——-Hg (39)¢£ rp(r)d aeirdr-o;i-l, s ietd
(L.13)
Bquations (4.13) are n equations which determine the parameters Ci'

Here, as in the Rayleigh-Ritz Method, only a restricted set of admissible

curvatures approximate ao; therefore, the true strain condition is

not obtained.

4
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Klotter (12) proves the equivalence of the above two methods

Fox (13) (chap. 7) supgests what accuracy is obtainable by a suitable

choice of assumed functions. A general explanation of these and
other approximate methods is given by Sokolnikoff (1) (chap. 5).
The next section demonstrates the use of Galerkin's Method.

L.lh The Numerical Example,

The numerical acproximation using equation (4.13) with Galerkin's

Method is demonstrated by solving the exam~le used in sections 2.2

and 3.2. This example is a simply sunported plate with a uniform

load p and a parabolic curvature-moment relation. The deiermination

of the bracketed term of formula (4.13) as a function of the assumed

EO is performed in section 3.1. Therefore, we have

2= - 2— -
b da da d"a de
I L S RN BT P
o dr dr

(b.1k)

-r g?— (r ar_o + % EQ;J + J‘r rpd%agi rdr =0, 1i=1, ..., no
% . A

where

da da. 2
. 2 | ;=2 , = 0 0
B = 0.6\h Eco +3ag (r l_)«k(r dr]'

The boundary conditions are
a). At the center of the plate, r = 0,

M_ = M, and, a . is finite

b). At the outer boundary of the plate, r = b,

M-O,rT- g-a = 0.

e g

(k.15)

(k.16)

ey ———
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Polynomials in r2 are selected as the approximating functions

a The polynomial for a one term anoroximation is parabolic. From

ei’

the boundary conditions }.16), Ggy is determined as

1
e, = 7 -3 (r/b)2 (L.17)

The form of the elastic solution suggests that Eé bhe written as

2
g, =B [7-3 o], (1.18)

where C is the adjustable parameter.
An algebraic equation for C is found by evaluating equations (L.1lh)

and (4.15) with expression (4.18). This equation is

e - 0.01925 C + 0,000401 = O, (L4.19)
© 1/2 2
where = A/ hpb“/D. The parameter Y first appeared in section
2.2 as an indication of the degree of plastic straining.
Equation (L.19) can be solved exactly, but the value of C for a
given Y is found with less effort by approximate methods. The follow-
ing method of Newton gives accurate results with one approximation.

Formula (L4.19) is expressed as a function of C,

£(C) = ve3 - 0.01925C+ 0.000401 (4.20)
The (n + 1)th estimate of C is dennted in terms of the nth approximation
plus a correction factor An'

G = Gt 4y (h.21)

This correction factor is found with the value of the function and

its derivative at cn.
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as(c. )
An - f(vn) 1 ac

The comhination of (L.20), (L.21), &nd (L.22) rieids

xhci - 0.0002005

rn
-~

asl =g thEE’- 0.00962

The values in Table V wer: determined with formila (h.2%).

Value of the Multiplvinr Factor for

a One Term Strain-Bnergy Approxiration

Y C
ettt ottt
o] +02083
0.775 0.02102
1.056 0.,02118
1,368 0402305

L3

(w‘l.:‘:\

()

For the two term approximantion, tha macond nolynomial 8oy which

satisfies the boundary condtions (L.16), 1s
- 2 h
Sop 11(r/b)° - 7(r/b)".

The two term apnroximation for c is

[ [ (r/b)] +C [ll(r/b - I(r/}]‘

(h.2l)

(hers)
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The second term, a__, alters the vralue of t-e parameter Cl found in

74

the one term aporoximation. For the two term esti -ate of s the
numerical work increases rreatly. The form of the algebraic equations

for C, and 02 found by using expressions (L.1lL) and (L.25) is
3 3 »
Allc + A1202C1 + A13 A;hcz + AlSCl + A1602 + A17 0

3 2 2 3
A _C + A__CC + A .C.°C. + A hC + A2501 + A26C2 + A

211 22°2°1 23% Y1 =0

27
(h.26)

The aij are constants which contain the parameter.Y. For the deter-

mination of C. and 02 with a riven value of Y, two simmltaneous third

1
degree equations must be solved,
L.5 Bvaluation of the Method.

A one term approximation by the minimum potential energy method
for a vlastically bent plate adiusts the numerical coefficient of the
elastic solution. For thc elastic plate the value of C in expression
(4.18) 145 C = 1/118 = 0,02083. Due to the plastic behavior of the
material, the circumferential curvature increases a maximum of 10.6
percent. The one term approximation gives a rapid method for directly
obtaining a magnitude correction factor for the quantities connected
with the curvature, but it does not show ho# the form of the plate is
altered due to the plastic behavior of the material.

The two term approximation makes a finer adjustment of the magni-
tude factor and also gives some information regarding variations of

the curvature with the radius. Besides the increased numerical work

necessary to obtain an expression of the form (L.26), two similtaneous
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third degree algebraic equations mst be solved for each particular
example. The lack of a numerical checking orocedure also presents a
strong objection to higher term approximations by pvotential energy

methods. Further comparison of this method with the =ethods of the

previous chapters is riven in Chapter VI.



CHAPTER V

THE APPLICATION OF COMPLEMENTARY POTENTIAL ENERGY

S.1 Formulation of the Minimum Complementary Potential Energy Method
for the Bending of Circular Plates.

The material in Chapter IV introduces the variational procedure.
The variational orinciple for this chapter is the principle of minimum
complementary potential eneregy. This method is applicable when the
moment-curvature relations state the curvatures in terms of the
moments, Thus, an inversicn of equations IV of Table I is necessary.

For this inversion a useful quantity ¥, similar in form to the

stress invariant S, is defined as

1 2
Hz 3 (Hi - Hng + MQ ). (501)
The substitution of equations IV of Table I into (5.1) yields the
relation
between A and M, the guantity A can he expressed in terms of ™ as
L= @ +n), (5.3)
where
= 2h\2n ,2n
I = —
B =38, () R, (5.1)

The B 's are constants determined by substituting equations (5.3)
and (S.i4) into IV and V of Table I and equating the coefficients of

like powers of M. The first two coefficients are

L6
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B " g My 8 T 3@ g,
Equaticns IV of Tcble I, (S.1), (5.2), and (5.3) are solved for the

curvatures in terms of the moments:

_2(1 +B') o
5 2

r

q - 20+ ) gr;%’

These are the inverted moment-curvature relations.

(5.5)

For the moment-curvature relations (5.5), the complementary
potential energy per unit area of the plate is expressed in terms

of M as

M

. V- g ﬂl—gﬁl ar, (5.6)

0

The complementary potential energy for the plate is
b
§ . " 2n ( (W, - wp) rdr. (5.7)
o

For the variational procedure of this section the following defi-
nitions are necessary:
1). Admissible moments are moients which satisfy equation III

of Table I and the boundary conditions for the moments,

2). Admissible curvatures are curvatures derived from admissible
moments and equations (5.5).

3). Admissible displacements are displacements calculated from
admissible curvatures and equations I of Table I. Thus, the comple-

mentary potential energy ﬁLcan be expressed in terms of only admissible

P 5__3:‘ T, O S et - —— - . -

e
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moments and the riven loa:s.

The princiole of :dinimum complementary povential energy states
that the adzissible moments which render QC a minimum, yield admissible
curvatures that satisfy equation II of Table I. Thus, the above
procedure gives the solution for the bending of a circular plate, or
moments and curvatures which satisfy equations I, II, III, IV of
Table I. The proof of the principle of minimum complementary potential
energy follows:

A necessary condition for @c to be a minimum is that the first
variation of bc is zero for all admissible mo ients. Because the loads

are prescribed on the surface of the plate, the first variation of

§, 1s

0 0
@c-znﬁr&ﬁ—wl ag-auro&ﬁ.ﬂaésngl rdr = 0.
o L. T
(5.8)

The substitution of equations (5.5) into (5.8) yields

b

f (a 64 + a M ) rdr = 0. (5.9)

S

The variations of the admissible moments mct satisfy equation III

of Table I:

d(raﬁr)
———"6M,. (5.10)

With the substitution of the following identity
b d(réM_) 2 gb d(reg)
g’“e_dr__ dr-raebﬂr -o—a;—éﬂrrdr
(5.11)

STt i 8 » B L. aasas SUL AR

it 2
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and eguation (5.10) into (5.9) we find

d(reg)
i 8 - —3r— [6M.rdr = O. (5.12)

When ejuation (5.12) is satisfied for all possible ad-issible variations
of Mr’ the bracketed term rmst be identically zero. Thus, ejuation II
of Table I is satisfied and the principle of ~inimum complementary
energy is rroved.
5.2 Approximete Methods.

The methods of section L.3 can be used to evaluate approximately
the inteerals (5.7) and (5.12). The intepral (5.7) is handled by
the Rayleirh-Ritz Mcthod with the simplification

55b W rdr =0, (5.13)

3 ¢
because the pressure p(r) is prescribed on the surface of the plate
and does not affect the variation of Qc. The assumed radial moment

M is

r

q n

= §- CiMri(r) (5.14)
where the Mri(r) satisfy the boundary conditions and the C, are the
adjustable parameters. The circumferential moment MG is

d(rﬁr) r
He-_&_+j rpdr, (5.15)
°

which assures the satisfaction of the equilibrium conditions for
admissible moments. The vanishing of the partial derivatives with

respect to the n parameters Ci of expression (5.13) evaluated in

BT
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terms of (5.14) and (5.15) determines t)e following n ejuations for

the n arbitrary parameters Ci:

5 /b
= Wordr=0. 1i=1,..,n (5.16)

c °
Equations (5.16) ensure an extremium of the complementary potential
energy for admigsible moment variations of the restricted set (5.1L);
therefore, only an approximate solution is obtained.

Equation (5.12) is approximated by Galerkin's Method. Galerkin's

Method gives n equations to determine the Ci of (5.14) as
a ——— r=0
o (T T = (5.17)

i=1, .co, n
The curvatures in equations (5.17) are calculated in terms of ﬁ; with
the moment—curvature relations (5.5) and expressions (5.14) and (5.15).
The result of this calculation is

b ) daﬂr B, , LT
( [El + B')(r =g + 3r TEE +r°p + 5 S rpdr)

o dr o)

, dM
!‘%B?(T —2- frpdr]M rdr-O

(5.18)
i=1, ¢oey, no
These n equations are enough to determine the n parameters Ci'
5.3 The Numerical ®xample.
The solution of the example problem of sections 2.2, 3.2 and L.k
is now approximated by the use of the Minimum Complementary Potential

Energy Method. Formula (5.18) is used for Galerkin's approximation
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method. This numerical exaiiple has a parabolic mcment-curvature
curve when the moment invariant, M, is expressed in terms of the curva-
ture invariant, A, The factor B' of the inverse relationshlp, beconmes

the infinite series

+ e (5.19)

Expression (5.19) is a specialization of (5.4) when only A\, is considered.
An approximation to expression (5.19) of the form

1/2... 2
Bt = 2.4 (A (5.20)

is made to simplify the calculations.

One justification of this estimate is that the actual moment-
curvature relationship of M to A is a parabolic aporoximati-n; there-
fore, an approximation could be made by a parabola of the foria (5.20).
The factor A zan be adjusted to give as mch accuracy as possible for
the range of M to be considered. The adejuacy of expression (5.20) as
a representation of (5.19) is discussed later.

The one term polynomial approximation is suggested by the form
of the elastic solution of the simply supported circular plate with

constant load p.
Hr - Cpb° [:1 - ("/b)a . (5.21)
Here, C is the adjustatle parameter and
& 2
M =T (r/v)<. (5.22)

The evaluation of expression (5.18) with (5.1), (5.15), (5.20), (5.21)

and (5.22) yields the cubic equation for C
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¥ (c - 0.7366 €% + 0.1920 C - 0.0167k)

+ 0.5952 C - 0.1302 = 0, (5.23)
where Y° = Xl/z hpb2/D. The parameter Y first appeared in seciion
2.2 as an indication of the degree of plastic straining.

By the aporoximation method of Newton, which is explained in

section L., the successive approximations for C are obtained from

z“(cn3 ~0.3683 €2 + 0.00837} + 0.0651

C bd . (50211)
o+l yi(y,5 cn2 - 0.7366 C + 0.0960) + 0.2976

Formila (5.2L) is used to determine the values of C in Table VI,
BExpression (5.20) is now compared with (5.19). The quantity

0Y/2M/D)2 is evalutated with (5.1) and (5.21) as

1/2 ., 2 #
() = -’l;- Zf"’ [1 - L(r/v)° + 7(r/b>ﬂ
S em? - sam] 3 (r/b)h} (5.25)
Equation (5.25) has its maximum value at r = O.
1/2, ., 2
A = P (5.26)

This parameter indicates the difference between (5.19) and (5.20).
When Y = 1,368, the first three terms of expression (5.19) give a
value of B' over 70 percent greater than (5.20). Thus for large values
of Y these two expressions are not ejuivalent.

For a two term approximation for ﬂr, a similar procedure to that
of section L4.L can be applied. The same numerical difficulties arise
and the extra effort involved in the calculations makes the two term

approximation impractical.
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Value of the Multiplying Factor for a One Term

Complementary Strain-Fnergy Approximation

TABLE VI

Y c

r_o 0.21875
0.775 0.2185
1.056 0.2178
1.368 0.2163
2.00 0209

S.i Bvaluation of the Method.

For the calculations of section 5.3, the moment-curvature relation

is given by formulae (5.2) and (5.20). For large values of the vara-

meter Y, the moment—curvature relation of section (5.3) is not equivalent

to the relation used for the numerical calculations of the previous

chapters, Thus, the numerical results of this chapter cannot be comparcd

with those of the previous chapters. Also, the parameter Y -annot

be interpreted in terms of the calculations of Chapter II,

C determiried by equation (5.23) and the M given by (5.25), M is a

monotonously increasing function of Y; thus, Y still indicates the

stress condition in the nlate.

For the moment-curvature relation

With the Y and
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with a B' given by (5.20), the value of Y is not restricted, because
the moment-curvature relation determined by this B' does not have a
horizontal tangent.

The complementary potential energy method and the potential
energy method give moments and curvatures which bracket the actual
potential and comolementary potential energy of the plate. 4 discussion
of this bracketing is found in the report by Greenberg (16). In this
work, the bracketing of the potential and complementary ootential energy
is not obtained because different moment—curvature relations are used
to calculate the potential and complementary potential energy.

The elastic solution of a circular plate gives a Mr where
C = 7/32 = 0.,21875., This elastic coefficient can be comparsd with the
values of C in Table VI which consider the plastic moment—curvature
relation. The one term approximation of section 5.3 makes an adjust-
ment for the magnitude of Mr but does not show the change in the
distribution of the moments due to plastic effects. Higher term approxi-
mations adjust the distritution of the moments but lead to numerical

difficulties which make them impractical,

—



CHAPTFR VI

CONCLUSICK

6.1 Comparison and Interpretation of Numerical Results.

The work of the previous chapters develops four -ethods for
obtaining apcroximations of the stress and strain condition of a
plastically bent circular plate. The numerical calculations of Chapter V
for the minimum complementary potential energy method use a mo:ent-
curvature relation different from that of the previocus chapters.

This difference makes a comparison of the numerical results of Chapter V
with those of the previous chapters meaningless, Therefore, only the
numerical results of Chapters II, III, and IV are conmpared.

The circumferential curvature, ag, is used as the measure of
comparison for the various methods., Figure 10 shows ag as calculated
by the various methods for Y = 1,368 and Y = 1.056. These cases
represent a plate which has reached a maximum strain condition at the
center, Y = 1.368, and a plate having only half the maximum peraissible
strain invariant at the center, Y = 1,056. The results for Sokolovsky's
Method are calculated from the data on Figure 9 and formula (2.32).

The results for the iteration method are obtained with the use of
Table IV and expression (3.21). The curve for the inimum potential
energy method is obtained by using Table V and formia (h.18). The
iteration method is calculated by using the two correction terms

f. and f_,, while the potential energy method uses a one term approximation.

1 2?
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For Y = 1.056, the contribution of the f, term in formla (2.32)

2
of the iteration method increases ey by 1 percent, Thus for smull Y,
the one term iteration approximation gives quick, accurate results,
Actually, this approximation introduces less error for smal: Y than
Sokolovsky's Method when the increments in the numerical integration
are of the size used in section 2.3. The algebraic work for the
iteration method is also less than that of the minimum potential energy
method,

The plate which has reached the limit of plastic strain at the
center offers the best iadication of the accuracy of the different
methods. The results for this plate are shown in figure 10 (Y = 1,368).
The values for ey from 3okolovsky's Method and the iteration method
compare favorably. The difference in these two curves indicates the
magnitude of the neglected terms in formula (3.21). If additional

terms are used in the approrximation for c(n) in the iteration method,

e
this value of cén) would approach the value of g given by Sokolovsky's
Method. The values of &, for the minimum -otential energy method lie

%]
below those of the other methods. When only the first correction term,

fl’ of formla (3.21) is used, the iteration and the minimum potential
energy mathod have close numerical agreement.

The deflection of the mean surface of the plate is calculated by
using the results of the iteration method in formula (2.3L). The cq
from the iteration mcthod is used to calculate w(r) because it is
expressed in the form of a polynomial which is easily integrated and

has a good numerical agreement with the ey given by Sokolovsky's Method.
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The result of the substitution of (3.21) into (2.3k) is

()~ gg; {2.75 - 3.5/ + 0.75(e/m) + P [0,06873

- 0.11635(r/0)? « 0.071?8(r/b)h - o.029ho(r/b)6 + o.ooSzh(r/Eiﬁr
+ Y0 [0.01103 - 0.02275(r/1)Z + 0.02328(r/b)® - 0.01883(r/b)®

+ 0.00991(r/b)8 - 0.00302(r/b)lo + C.OOOBS(r/b)E%i'S (6.1)
The values for w(r) in figure 11 are calculated with formula (6.1) and
give the deflection of a circular plate for Y = 1,368, Y = 1,056, and
for the case of linear stress-strain relation in which case Y = 0.
The increase in the deflection at the center of the plate due to the
non-linear term in the stress-strain relation for Y = 1,368 is about
13 percent.

The radial bending moment Mr for Sokolovsky's Method 3s found by
substituting the values for ®a®™ and w of figure 9 into equation (2.33).

When the @, given by formula (L.18) is substituted into equation IV of

*]
Table I, the Mr for the potential energy method is

2 2
M - 2PUCT (r/b)z:l[ - é!_;‘C_ [39(,,b)u - (/)2 : @B
(642)

In the example of the simply ﬁupported plate, the boundary conditions
on @ are determined by equation IV of Table I; thus, formla (6.2)
gives an Hr which satisfies the boundary condition, Mr =0atr =0,

In general, for the minimum potential energy method, the admissible
curvatures must satisfy the boundary conditions, but the derived bending

moments do not have to satisfy the boundary conditions., Figure 12

T -
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gives a comparison of the radial bending moment calculated from equaticns
(2.33) and (6.2) for the fully strained plate, where Y = 1,368.
6.2 Remarks on the Theory of Plastic Flow,

In section 1.k the stress-strain relations of the secant modulus
theory (the theory of plastic deformations) are forrmlated. The
combination of (1.13) and (1.14) gives

s, = 20[1- r(s—j ey 171,23, (6.3)

Inverse relations relating the total strains to the stresses are found
by a orocedure similar to that of section 5.1. These inverse relations

are of the form

0, = 2‘16[1 ‘g (s] s;» 171,23, (6.1)

Rxpressions (6.3) and (6.L) are valid for the case of loading only.
They relate the final stress condition to the final strain condition
of the element independently of the path of loading.

Recent experimental investigations by Phillips (20) and Morrison
and Shepard (21) indicate that the plastic behavior of a metal is
described by the laws of plastic flow. Hill (7) (chap. 2) and Prager
and Hodge (18) (chap. 1) give a formulation of the theory of plastic
flow. In wnat follows we shall consider the case of loading only.

The theory of plastic flow relates the increments of the strain
deviation to 1). the increments of the stress deviation and 2), the

gtress invariant by

de, %Esi + sih(s):ﬂ , 1 =1,2,3. (6.5)

e + 65— E 3 . i
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Thus the total strain deviations are given by the line integrals

(5(81)
IR AR sih(S)dS s, 1 =1,2,3, (6.6)
o

~
—

which depend upon the manner of stressing the element. The appear-
ance of the line integrals in (6.6) makes the inversion of the stress-
strain relations impossible, Hill (7) (chap. 2) shows how to express
the increments of the stress deviations in terms of the stresses and

the increments of the strain deviations as

ih(S) ;i; side1
dsi = 2G dﬂi - m}—— s 1 = 1,2,3- (607)

Bquation (6.7) does not determine the increments of the stress deviations
in terms of the strains only, but also assumes knowledge of the stress
condition of the element.

Because the stress condition of the body must be known to determine
increments in the stresses for given increments in the strains, a
solution for the bending of a plate which satisfies assumption ce
section 1.3, must be a step by step procedure. For this procedure,
increments in the curvatures determine increments in the strain
deviations which satisfy assumption c). These strain deviations
together with the knowledge of the stress condition from the previous
step, can be used to calculate the increrments of Lhe stresses from
equation (6.7). These stress increments are used to determine incre-
ments of the bending moments which must satisfy the equilibrium equation

I1I of Table I. The rmmerical work of such a procedure is enormous.

= & - il o oasan b * Fra s [}
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An estimate is now made of the change in the numerical results
of the previous chapters if the laws of plas%ic flow were used instead
of the laws of plastic deformations. Foi this estimate, figure 13
is constructed by the procedure similar to that of section 2.1 for
the construction of figure Sb, Then, figure 13 is used as an aid to
differentiate between the laws of plastic flow and plastic deformations,
For the construction of figure 13, the strain deviations are
divided into
e, =6 +¢P i=1,2,3, (6.8)

where ei° is the elastic strain deviation given by

ei" - 8,/2 i=1,2,3, (6.9)
for toth (6.4) and (6.5). The plastic strain deviation eip is given
by

5 s,8(S)
ei L T i=- 1,2,3, (6.10)

for the theory of plastic deformations, and by

sih(S) ds
deip - i=1,2,3, (6.11)
for the theory of plastic flow, Because e ® is tne same for both

i
theories, only eip is compared to determine the difference between the
theories of plastic deformations and plastic flow,

In figure 13a, axes (+/3 elp/2), (V3 eap/2), and (+/3 eBp/2) lie
in the principal stress axes 0"1, 0'2 , and 6'3. The angle w is determined
by a vector 5, where S has the components s,/V?2, 52/7/5, and 33/-/2_.
The vector 5 lies in the octahedral plane and is equal in magnitude

to the stress invariant S.

'
H
[
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The surface shown ir. figure 13b is a surface of revolution about
the S axis which determines the strain hardening characteristics of
the material, The S axis is perpendicular to the octahedral plane
described above, For the theory of plastic deformations, the value
of EP

1/2
P = (1/2 ;_LT eipeip) 4 (6.12)

is the radius of the circle formed by the intersection of a plane
parallel to the octahedral plane and a distance S from the octahedral

plane, The substitution of equations (6.10) into (6.12) yields

P - §&§g)— , (6.13)

where squation (6.13) determinss the curve which generates the strain
hardening surface. The ortiogonal projections of a vector Ep, at the
angle o in the octahedral plane, on the axes, (43 elp/2), (qfi'ezp/2),
and (+3 eBp/2) are the plastic strain deviations given by equations
(6.10).

For the theory of plastic flow, expressions (6.11) are used to

formulate the quantity

3
/\/I/ZEdeipdeip - %éﬂds. (6.14)

This quantity is the increment in i1he radii of the circles formed by

the intersections of the planes parallel to the octahedral plane at
the distances S and S + dS with the strain hardening surface. Equation
(6.14) determines the shape of the curve which generates the strain

hardening surface. The orthogonal projections of the incremental vector



J—

62

3
,vfl/Z > :deidei, at the anrle w in the octahedral plane, on the
i=

axes (3 elp/2), (43 ezp/z), and (43 eBp/2) are the increments
of plastic strain deviations pgiven by equations (6.11).

As a simplification, the principal axes are assumed to renain
fixed throughout loading, This assumption is true for the case of
circular plates symmetrically loaded. Also, the strain hardening
surface is assumed the sa.ie for the theory of plastic flow and for the
theory of plastic deformations, With these assumptions, and if o = const.
during loading, (increasing §), the same total plastic strain deviations

are predicted by both of the above theories. But when w changes during

. loading, the value of the total plastic atrain deviations given by the

theory of flow will depend upon how w changes, while the total plastic
strain deviations given by the theory of plastic deformations depend
upon the f£inal value of w. Thus, for any case of loading of an element
where the anrle o changes during loading, the values of the total plastic
strain deviations predicted by the theory of plastic defornations differ
from those predicted by the theory of plastic flow. However, when the
total change of w is slight, this difference is small enough to be
neglected,

The variable o introduced in section 2.1 was determined by the
direction of a vector & in thc octahedral plane., Because the components
of _A’ are proportional to the comronents of i’, the vector—i’ has the same
direction as the vector ?. This vector ?is parallel to the vector §’
for the laws of plastic deformations; thus, the variable o used in

section 2.1 is the same as the above w. An inspection of figure 9
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shows that the chanre in « is only a few degrees at any given value
of r/b during the loadinc of the plate; hence, the moments predicted
by the theory of plastic deformations should be ver: close to those
predicted by the theory of plastic flow, but not identical.

6.3 The Application of the Methods of Chapters III, IV, and V to
the Bending of Rectangular Plates.

The small deflection theory of rectanpular plates can be treated
with the methods of Chapters III, IV, and V. A brief outline of the
application of these methods is now given. Swida (19) develops the
kinewatic and equilibrium equations. Ilyushin (9) applies the method
of minirum potential energy and the iteration method to the problem
of the hending of rectangular plates.

Some of the notation of the previous chapters is now altered.,

The strains are defined as
/
cij -% (adi/axi + &lj/axi) » 1 = x,y,2 (6015)
The kinematic condition that normals to the neutral surface remain

normal to the n~utral surface in the deflected state still holds and

allows the significant strains to be expressed as

€ _m~-2W__ 3 € _=-2zW_; € = -7ZW (6.16a)
xx xx Yy Yy Xy xy
where
- 2 2 . = 2 * = 2
w_ =3 w/axc ; Moy 3 v/ay2 R d“w/3xdy (6.16b)

and w is the deflection of the neutral surface. Equations (6.16b)

are the kinematic equations which exnress the quantities, L "yy’
and "xy’ in terms of the deflection w.
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In the rectangular plate theory € y2 Sn and o, are assumed to

vz
be zero. For the following formulation, the material is assumed

3 imcomprzssible, that is
F" ’ -
LI ) SRl . 0. (6.17)

From the above assumptions, the stresses are written in terws of

the strains as
o, = 1o [1 - F(E)] (e + e /2)
oy =16 [1- FE] (e, + e /2) (6.18)
=2 [1- F(%)] €y

The second strain invariant B is

2, 2

1 2
5 123 848 = Gy VE L vE B8 (6.19)
s

and as in Chapter II, E can be written in terms of a quantity A as

] B = 2247 (6.20)
where
e 2 2
A L "yy + 'xx"yy + "xy 5 (6.21)

The function F(E). which expresses the plastic properties of the material,
is given by the polynomial
=2 n_s—, .2n2n
F(B) =Y _ B Z;_ A 2SR, (6.22)
n=1 n=
The definitions of the bending moments

Mx L _{ C'zﬁz ’ My = = c‘ywz ’ ny L 2 TxyZdZ (6.23)
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are combined with equations (6.16), (6.18), and (6.22) to yield
Moo= D(1 ~ B) ('xx + vyy/2),

M= - D(1 - B) (vyy +v_/2), (6.24)
xty = -D(1 - B) vxy/z,
whera

D = 86 h3/3

o 3
B= D (na)2?,
2oz ¢

The equilbrium equation for a rectangular plate is

(6.25)

3%M_ ., a’M . a’M o) = 0 6269

gxggzP’Y! .
where p(x,y) is the distributed load per unit area which acts normal
to the surface of the plate. Equations (6.16b), (5.2L4), and (6.26)
are the equations which are used to find the solution for the bending
of a rectangular plate,

A formula which can be used for the iteration method is obtained
by the substitution of equations (6.16) and (6.2L4) into (6.26). These

substitutions yield

o = § (p(x,3) + B,), (6.27)
where

L
Fy - A +2 -953-5 +
5;5 ox dy

F




66

a°B

p_. =D Bv%‘w#(w W ) + W azB«»(\.v + v )azB.
P xx ~ “yy/2! 32 " “xy Sxdy v/ 52
(6.28)
pp is & pseudo-loading due to the non-linearity of the stress-strain
relations. If the iteration method of Chapter III were follcwed, a
Green's Function for the elastic plate would be developed so the
effect of any arbitrary loading on the deflection W could be found by
evaluating an integral. In order to find this Green's Function, the
elastic plate problem of a concentrated load acting at any arbitrary
point on the plate with the given boundary conditions must be solved.
Such solutions are given in terms of infinite series which make the
evaluation »f pp very lengthy. A direct approach, which involves less
numerical effort, is to first assume B = O and directly solve the elastic

problem

the - L(g‘ﬁ- (6.29)

for the given boundary conditions, The L) found above, is then used
to evaluate P with (6.28). This Pp is used to obtain a first approxi-
mation for w with

b

vy = (B(x,3) ¢ B)). (6.30)

In general, analytic solutions of (6.29) and (6.30) are difficult to
find, but relaxation or methods of finite differences can be used to
get numerical results. The w found above can be used to evaluate a

r.ew pp for a second approximation of w. Judging from the numerical

- e
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results found in Chapter III, only two iterations should give sufficient
accuracy,

Tne minimum potential energy method of Chapter IV can be used to
obtain an approximate solution for the bending of a rectangular plate,
From the combination of (6.21) =ni (6.2L), we find the moment-curvature

relations in terms of A as

y - =D -B) 3% w - DA -B) 5%°
» »
x 2 a'xx y 2 avyy

. (6.31)
2 S~

2,2
o DA -B) 34
xy
For the moment-curvature relations (6.31), the strain energy per unit
area of the plate is

2
W -SA %1_2‘_22 ar, (6.32)

o]

The potential energy for the plate is

- sz (W - pw)dxdy. (6.33)

The first variation of b must be zero for minirmm potential energy. When

equations (6.31) are substituted into 6§ = 0, the result is

56 - gg Mx(-éwn) + 2Mxy(-6wxy) + "y("“’yy) - pbw dxdy = 0 (6.34)

Fxpression (6.34) can be put in an alternate form which shows that
the minimization of the potential enerpy for admissible curvatures
satisfying (6.16b) and deflections satisfying the given boundary

conditions yield moments which fulfill the equilibrium conditions,
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To do this, integrations by parts of the type
BM
S;Y.Mx(-éwxx) = _j M (-6 ) ds + S’S 3; dxdy
oM
-005 fg—Tsudxdy-o-f(—z-’iswdxdy
Boundary
(6.35)

are performed. Then equation (6.34) becomes
Sg 825‘ azq‘ 82M
Al +2-55§+;gl+p Swdxdy = O (6.36)

The bracketed term of (6.36) is the equilibrium condition (6.26).

An approximate solution is obtained by assuming a ferm of the
deflection
" n
we Z Ciwi(x,y) (6.37)
i=]

where the Ci are adjustable parameters and the v, satiasfy the given

boundary conditians of w., The Ci can be evaluated by the Rayleigh-Ritz

method where § is eveluated in terms of W and the n equations

4

&—"0 i-l, ecey n (6.38)
i

determine the Ci. The equivalent method of Galerkin may be used with
equation (£.36).

The minimum complementary potential energy -ethod cf Chapter V
can be applied to a rectangular plate for anproximate solutions.

Expressions (6.2L4) determine a quantity M as

W a g(u -HM + M 2) E_’_Q?__l-ﬂ (6.29)
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As in section (5.1), A is expressed in terms of M as
A= % (1 + B')M (6.40)
where
Bt = i B, (B2 2n (6.41)
n-

The B have the same values as in section £.1. Inverse moment—curvature

relations are obtained from (6.2L), (6.39), and (6.L0) as

. L _ 201 +B') o
-V T W oBy (M - M) ) o

L 2(1 + B') M
-vw-m (My-"x/Z) - m;, (6.112)

cy =2 y . +B)
xy D@ -B) ‘xy 5“,, *
For the moment-curvature relations (6.42), the complementary strain

eneryy per unit area of the plate is

2(1 + B!
(28 a2, 64

and the complementary potential energy of the plate is

§ = ff O - axay. (6.1)

The first variation of @c mst be zero for minimum cowplementary

potential energy.

For the ccmputational work, both ﬂx and Hy can be assumed as

n n
H - g CiM () 5 Moo= E D,M_, (x,7), (6.15)

1 PO
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where Ci and Di are parameters, and &xi and Myi satisfy the given
boundary conditions on the moments, The twistineg moment is calculated

from (6.26) as

oM
R - - 3 [:gp(x,y) dxdy + i; S Yot 4y (6.16)
%{*:1,,1 Si:'?m’] + F(x) + 0(3),

where F(x) and G(y) are chosen so that they give the correct boundary
conditions for Ety‘ When the load is prescribed, &p is zero; thus,
the term wp can be disregarded in the calculation of Qc because it
has no effect on the first variation of ﬁc. §. is calculated with
equations (6.39), (6.43), (6.4L), (6.45) and (6.46); then the C, and

D, can be obtained from the 2n equations

i
) %
wi - O 8!11 wz— - 0. (6.h7)

This section has developed methods for the approximate solution
of the small deflection theory of rectanpular plates which parallel
those for the small deflection theory of circular plates, Similar
solutions for the large deflection theory of plates, where the stretch-
ing of the neutral surface is considered are not readily obtainable,
Bven the elastic solution of such problems gives non-linear ejuations
which are difficult to solve, and as we have seen the elastic solution
is a first step in the iteration process. In addition, due to the
terms from the stretching of the neutral surface, the strain invariant

B cannot be expressed as a function of the curvatures only. Therefore,

s
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the moments and curvatures cannot be the only variables in the
formulization of the differential equations. Because of these
mathematical difficulties, the condition of a vplate is usually
approximated by either the small deflection theory of bending,
or a large deflection theory where only membrane stresses and

strains are considered,
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